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PROJECTIONS OF PLASMA CLOUD STRUCTURES AND THEIR SPECTRA

1. INTRODUCTION

Observation of unstable and turbulent geophysical fluid dynamical

processes are often indirect and made from remote sensors. Many processes

are observed optically from several vantage points and the spatial radiance

distribution is recorded photographically or electronically. From

successive frames, one hopes to deduce the location and morphology of

evolving hierarchies of structures. Unfortunately, a detailed recon-

struction is impossible because of the lack of precise control of the

processes that govern the radiation, the paucity of recording locations,

and the lack of detailed in-situ (rocket borne) diagnostics. That is,

compared to the progress in laboratory tomography, our problem is highly

underdetermined. 1,2

A long-range goal of the present investigation is to construct simple

models of radiating ionospheric or HANE plasma clouds that are useful to

communication and tracking systems engineers. We are interested in the:

intercloud distances, scale sizes, gradients and asymmetries with respect

to the earth's magnetic field and ambient winds and the evolution of these

structural features. We will distill the bits of information available

from field experiments and large-scale nonlinear dynamical computer

simulations into cogent models. Conventionally, one discretizes field data

and uses the computed power spectral densities (PSD's) to compare with

realistic turbulent or wave steepening numerical simulations. However,

PSD's and their spectral exponents are subject to errors because of the

inadequacy of resolution and dynamical range in experimental and numerical

simulation data. Some considerations of the latter were given in the first

report of this series3 and are applied here.

In Section 2 we discuss the relation between radiation from an

idealized (piecewise-constant, pc) cloud and its projection functions,

f(x). These are intensity scans through a "slice" of the cloud. For

simplicity, the cloud is taken to be sufficiently remote so that parallax

Manuscript approved January 28, 1985.
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". effects are negligible. That is, all rays emitted by the cloud are

perpendicular to the projection plane. We will show that essential

properties of f(x) are related to properties of the cloud's boundary curve

(e.g., curvature, etc.) at points where projection rays are tangent to the

boundary curve. We also examine the competition between local curvature

and density gradient at a tangent ray to clouds. In Section 3 we relate

PSD's of clouds to the PSD's of their projection functions. In Section 4

we analyze measured scans from two "PLACES" experiments in light of the

above results, and Section 5 presents our conclusions.

2. PROJECTIONS OF 3D CLOUDS

2.1 Introduction

Ionospheric plasma cloud densities may be approximated by the

separable function

n~xo,t) = nj.x',y0,t)g,1z0,tl (1)

where z' is along the earth's magnetic field. Thus nI exhibits a steep

"backside" and gI may be approximated by exp - [[zo - z0 /zj2 where
2 2

2 2 0 + (vt) approximates a diffusive spreading along z with

diffusivity v and zo(t) decreases in time as the cloud settles from its

high altitude release point. There is evidence that the symmetry in z' -

z0 may be broken in time, that is, the higher altitude regions may be more

diffuse.4  However, to illustrate the nature of projections and the

essential issues involved in computing PSD's we suppress the time variable

and consider an idealized cloud with piecewise constant (pc) density in a

bounded domain D, namely

F xe D
0

n ,(2)
0 D

2.2 Piecewise-Constant Clouds.

Figure 1 shows a segment of a pc cloud, the curve C(x,y) - 0

(which is the intersection of domain D and P(x), the perpendicular

intersection plane) and the projection plane on which the radiance image is

recorded. The sketch to the right of the plane is an intensity plot f(x)

associated with a "slice", the line a-b on the projection plane. For an

2
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optically thin cloud, f(x) is obtained by integrating the intersection

intensity, fl(x,y), along the y direction (perpendicular to the projection

plane). The limits of integration y+(x) and y(x) are the intersections of

a line perpendicular to the projection plane with C(x,y) - 0. That is

L +y+(x)

f(x) = J dy fI(x,y) = F0[y+(x) + y_(x)- F0y(x). (3)
-y_ x)

Generally, for non-pc clouds fI(x,y) will not be constant and will depend

on the orientation angle of the viewer with respect to the magnetic field

and ambient wind.

Consider f(x) near x = x0 where a projection ray is tangent on the

left to C(x,y) = 0, (e.g., point a in Fig. 1). Thus, for x > x0 we

represent the curve locally for y > y0 by

* x- x0 = t, (4a)

y - Y0 yt  (4b)

where t + (0+). That is, the right side of (4a) and (4b) may be considered

the leading terms in a series in t, which represent an arbitrary curve.

Thus,

Y x -- Yt/Xt "T~tT-I

is singular, constant, or zero as t * 0 if T < 1.0, T - 1.0 or r > 1.0,

respectively. Similarly, the curvature

YttXt - xttY yT(T_1)t(-2T + 1) (6)K = - (T < 1)
2 2 3/2 t2-2T 2 2 3/2 C

tx + Yt[

is singular, constant or zero as t + 0 if T > 1/2, T = 1/2, or T < 1/2,

respectively. The table below summarizes some cases in the vicinity

of x x0

3
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Table 1. Various Curves, (Equation 4) Near an Extremal Ray and The
Asymptotic Behavior of the PSD for Piecewise-Constant Regions

ASYMPTOTIC
LOCAL BEHAVIOR OF PSD

T FUNCTIONAL FORM Yx (X0 ) C(xO) FIG. 2 FOR PC REGIONS

2.0 Y-y0 - +y(x-x0 ) 0 (NOT SHOWN)

4/3 Y-yo - +y(x-xo )4/3  0 o CUSP k- 14 /3

(NOT SHOWN)

1.0 Y-yo "-f(x-xo) y D CORNER k-4

-(NOT SHOWN)

2/3 Y-Y0 - +y(x-x0)2/3 O (NOT SHOWN) k-I10 / 3

1/21/2 Y-y0 - +Y(X-x0 ) -2/y' k-3

1/3* y-y0  Y(x-x 0) 1/3 D 0 k-8 3

1/4 -/1/4 Y-Yo +Y(X-X 0)1 0 k-5 2

C<<1 Y-y0 - +y(x-x0 ) 0 (NOT SHOWN) k

*All cases are fur x > x0 except T 1 1/3 which applies for < x < c

The next to last column refers to illustrations given in Figure 2. The

last column gives the asymptotic behavior of the PSD for pc densities (i.e

- . m = 0, as discussed in Sec 3.2).

For example,the elliptical limacon

(x,y) 1 l-u cos 81(a cos e, 8 sin 6), (7)

has a curvature

K atl + 2U2 - 31 cos 0 lD 3 /2  (8)

where

4
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2 2 2 2

D = a (sin 6 - u sin 26) + 82 cos 0 - cos 261 2 . (9)

From (8) one obtains < = 0 at 0 f 0 if u = 1/2 and

(y/81= !2l- 1 (A - X) 1 4 +... (10)

which corresponds to the T - 1/4 entry in Table 1. More realistic clouds

may be composed by summing many nested pc clouds and each one will

contribute its own projection function.

2.3 Finite-gradient Clouds.

We now consider more realistic n(x) with finite gradients near

the edge of the boundary of the domain. Hence fl(x,y) is no longer

constant within the contour of intersection C(x,y) and we have two

competing space scales at the tangency points, namely, the local radius of

curvature and the local gradient scale, I = f /1fl I.

To elucidate this competition, we perform a local analysis for a

structure with a polynomial flank of degree m

fl = x0-m [(xb - x ) 2 + (Yb - y) 2m/2 F0, x0- IE < x X 0  (1)

where (xb, yb are on the boundary such that

Y_ (ybYD 
)

x (xb -x)'

or

Xb 0 _ _TY (12)

To lowest order this is

xny T
Xb x0 - Y)

At fixed x, one evaluates

Y+

f = 2J fl(x,y)dy,
0

5
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where y+ - y(x0 - x)T. Near x f x0 , one expands the terms in parenthesis

and retains only the lowest order in y, 0(y2 ), and after some algebra

obtains

f - 2x Foy(X0 - x)m+ + 0(x0 - x)m+T'l  (13)

Thus, to leading order the exponent increases from T to (m + T ) if a

piecewise-constant cloud is replaced by one with a m-th degree polynomial

flank. Note this indicates that by examining projections, one cannot

distinguish between local gradients of density and the local shape of the

boundary curve of the cloud.

3. POWER SPECTRAL DENSITIES OF PIECEWISE-CONSTANT CLOUDS AND
PROJECTIONS

3.1 Clouds

We define the direct and inverse Fourier transforms of an n-

dimensional cloud as

-ik-x
f(k) , ... = j(n)f()e dx , x e (14)

+ik.x
( 2 )n f(k)e dk nk R (15)

f(:0) ftx,x 2 , ... ,xj 1(n

where 1(n) symbolizes n integrations that cover the entire domain
and dx dx dx ... dx and dk -- dk dk ... dk. The last can be

- 1 2 n -- 1 2 n
written as dk dk dak, where k IkI and d. is an (n-l)-dimensional

nh~
surface differential such that J(n-l)dak- 2 n /r(n/2). The functions f

and f satisfy Parseval's formula

ET 2 dk (2w)n Jf(x)12 dx, (16)

where I f2 is the PSD.

[ Gelfand et al. 5 show that if the boundary 3D of a pc cloud of density

F0 is a convex surface (i.e., at each point on D the product of the

principal radii of curvature * 0), and if D is centrally symmetric about

the origin (e.g., like an ellipsoid), then the asymptotic spectrum is

6
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(n-0)/2 (/)-nl/f(k) = 2Fo(2r) (P P . l2)k(n+l)/2

Cos 1ka (n+l)] I + k7/2 (17)

where k = Ikl, 2a is the "diameter" of D perpendicular to the direction k/k

(which is associated with the index n) and p1 p2, ... Op n-i are the

principal radii of curvature at points A and A' on aD, namely the extremal

points. Figure 3 illustrates these quantities for an ellipse (n = 2)

where k/k = e, and the curvatures K = 1/p1 at A and A' are the same, since-y
the ellipse is centrally symmetric. The two-dimensional PSD obtained from

(17) is

2 2 -3 2 3w -1/2EWk= If(k)i 8F 0p1k cos 2ka - --] + Ofk IF. (18)

We define the one-dimensional PSD as

- E 1(k)-k
n 1 j (n-) dak E(k) = kn- 1  1) daklf2 (19)

and thus ET = ] dk El(k). From (19) with (17) the dominant term in El(k)

is

3n
a+2T- 1 2-2 2El(k) = [2 2 /r()]F k cos tk; (n+l)ir] +

1 2 0F 1] -2OP2 ... Pn-l )  4-

(20)

That is, the asymptotic dependence of the one-dimensional PSD of an n-

dimensional piecewise constant cloud with convex boundaries is proportional
to k- 2 and the quantity in brackets is (4w) 2 or (47) 3 for n = 2 or 3,

respectively. The amplitude of the asymptotic spectrum is inversely

proportional to the product of the curvatures at the extremal points.

3.2 Projections

In Section 2 we have shown that in a small region near the tangent ray

(e.g., the origin x = 0), we can represent the projection function as

f(x) = x h(x), x > 0, (21)

where h(x) is an analytic function for x 0 and T > 0. The simplest

7
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projection function for a convex cloud is

' ."TI Tr
* f(x) = I I - tx/a 2 112 hl 2 (x), 0 < x < a 2 ,

* where h 12 is analytic and greater than zero between 0 < x < a2, and TV

T 2 are > 0. The asymptotic spectrum will depend on which exponent is most

singular, that is, smaller. For simplicity, we consider one such point and

Iexamine the Fourier transform
-ikx

f(k) = J e x Th(x) dx

0

*or

f(k) k(T+) J eiT h( /k)dE (22)
0

• where kx =. If one applies the method of stationary phase 6 for k >> 1

we can show that the integral is 0(1) and the asymptotic spectral index

of f is- (r + 1). The result agrees with that presented in our previous

report, 3 namely for the function

f - 1, lxi 4 a, f 0 0, lxi > b

(23)

2 -2jT
f = tI - (x-a) (b-a)- , a < lxi < b,

the asymptotic spectrum is - (T + 1) or the spectral index of the PSD of f

is p = 2(T + 1).

We conclude with the results: For clouds contained in a finite domain

and having a polynomial flank of degree m (see Equation (11)), the

asymptotic spectral index of IfL 2 (the PSD of the projection function f(x))

is

p 2(1 + T + m).

For pc densities (m = 0) the asymptotic spectral behavior is given in

41 the last column of Table 1. Note the well-known result, a k 3 dependence

occurs when the curvature at the extremal ray is

8

S°



finite (T = 1/2). Furthermore, the asymptotic spectral index varies

continuously from slightly greater than 2 (T e) to indefinitely large

values depending upon the nature of the cusp. Note, a linear flank on a

convex curve gives an asymptotic PSD a k- 5.

4. APPLICATION OF RESULTS
3

We apply the results of the present and previous papers to data from

the recent "PLACES" high-altitude barnn cloud releases. 7  We will show

that the PSD results in Reference 7 for events GAIL and IRIS are valid only

for the small wavenumber region, K < 1.5 km which is the region

associated with the mean size of the cloud. These spectra do not yield any

information about the asymptotic spectral index. Such exponents arise in a

Rufenach fit to a nonlinear dynamical process, namely

40 PSD(K) = [I + (KL0 )
2 -p/2

where (KL ) >> 1. In this section K = radians/km = (length) (i.e. not
0

the conventional 2w/(length)) and L. is the outer scale length, typically I

km to 3 km.

Optical emission data for events GAIL and IRIS are given in reference

7 in several forms: non field-aligned photographs of optical emission;

smoothed optical radiance contours (e.g., Fig. 4a and 5a); several scans of

the contours in a direction transverse to the local magnetic field (e.g.

Fig. 4b and 5b); and a PSD of a "windowed" scan (e.g. Fig. 4c and 5c).

Several features of the data reduction process deserve comment. In

windowing, the given data is multiplied by a prescribed function (a Kaiser-

Bessel window) which makes the resulting function nearly periodic. This

avoids discontinuities and large contributions to the high-wave number

spectrum at the expense of introducing a frequency domain "smoothing" by

convolution.9  In Figs. 4a and 5a three rectangular regions are shown. The

scans or profiles in Figs. 4b and 5b and their standard deviations are

obtained by averaging 21 separate scans in each rectangular region.

Typically this involves fewer than 256V2a 362 points per scan. This data

is then reinterpolated with 250 to 500 points (twice the ratio of the

highest to the lowest mode number) so as to obtain a reasonable fit to the

oscillations, which are attributed to striations. These reasonable but

9
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ad hoc procedures lead one to question the validity of the highest 50% of

the modes as a representation of the nonlinear dynamics of striation

evolution. The following table presents pertinent information obtained

from the small figures in Ref. 7.

EST. SPECTRAL
HIGHEST MODE LOWEST MODE HIGHEST MODE INDEX

FIG. EVENT REF. 7 (km- ') (km- ') LOWEST MODE (REF. 7)

4C IRIS FIG. 66 6.6 0.066 100 2.5

(LOWEST)

5C GAIL FIG. 51 7.6 0.038 200 2.5

(LOWEST)

For an approximation consistent with the location of the first two

nulls, the data in Figures 4c and 5c are conveniently fit with

trapezoids. For example, the symmetric trapezoid with altitude A, upper

and lower parallel sides 2a and 2b, respectively, has a PSD
3

ifi2= [A(b + a) (sin z+sin z_)/(z+z_)]2

where

z+ - wK(b + a).

Thus, if the scales are well-separated, (b + a)/(b - a) >> 1, then we

have a k- 2 envelope for K 2/(b + a) < K < K2 = 2/(b - a) and a k- 4

envelope for K > K2 1. From our asymptotic theory given in Section 2, the

k- 4 region would occur, no matter what the shape of the function in the

region (b - a), where the trapezoid is linear. This linear behavior

corresponds to T - 1 in Table 1. If other exponents, T , describe the

function in this narrow region then the appropriate spectral index envelope

would be 2(T + 1).

10



The first two nulls in Fig. 4c are consistent with fitting the scan in

Fig. 4b with a symmetrical trapezoid whose upper and lower parallel sides

are 2a = 1.8 km and 2b 6.2 kin. The first null of the discrete Fourier

transform, K11 , 2/(b + a) - 0.5 is associated with the first transition.

The first null of the second transition is at K21 = 2/(b-a) = 1.1 and is

consistent with the second null in Fig. 4c. Hence we conclude that the

*scales are not well separated. The only information available concerning

the asymptotic spectrum lies in the range K > 1.5. This region represents

a composite of effects resulting from: the K-4 trapezoidal spectrum; the

* small-scale structures on the trapezoid (their widths and separations);

* film grain noise; and aliasing. One cannot see the spectral index of

individual striations.

Event GAIL had steeper gradients as shown in Fig. 5b. One could

approximate this scan function by an unsymmetric trapezoid with an upper

* parallel side 2a = 14.5 km and a base composed of a right segment bI = 8.45

km and a left segment b2 = 9.45 km. The lack of symmetry causes an

interference of the nulls and they aren't as clean as in the discussion of

* Fig. 4b. However, it is reasonable to approximate the unsymmetric

trapezoid with a symmetric one with 2b = 17.9 then KI1 = 0.123 and K2 1 =

1. 18, a good separation of scales. Thus, between 0.123 and 1.18 the

spectral index is changing from 2 to 4. For K > 1.2 a comment similar to

that given in the above paragraph applies.

As discussed in reference 3, to make a good esimate of the asymptotic

spectral index from a scan with no noise, one needs at least:

256 modes for a scan function with two k-space regions

10,000 modes for a scan function with three well separated k-space

regions.

Thus, we conclude the data presented do not allow one to deduce the

spectral index of striations. It is obvious that a single unqualified PSD

index can be misleading.

6

11

6?



. .

5. CONCLUSIONS

In this report we have considered the relationship between a radiating

- cloud and the power spectral density of a scan of its photographic image.

To allow us to focus on the uncertainties associated with geometrical

aspects, we have assumed idealized conditions, namely: optically thin

clouds, no parallax effects and no distortion due to camera, lenses and

film grain.. We have considered clouds with a piecewise constant and power

law radiating density. We have not attempted to correlate this radiant

*' density with the ion density.

For convex piecewise-constant clouds, where the one-dimensional

" asymptotic spectrum of the power is proportional to k 2 , we have shown that

the asymptotic spectrum of the scan depends upon the character of the

contour at the point where it is tangent to the extremal ray. If the

contour at (x0 , y0 ) behaves like y - y0 = y(x - x0 )T then the asymptotic
[ k-2(t + 1)

spectral envelope of the PSD of the scan varies as k In

*0 addition, if the radiating density in a cloud flank varies with a power law

m then the asymptotic spectral envelope of the scan's PSD varies
k-2(1 + r + m).

ask

We have applied these considerations to data from PLACES events IRIS

and GAIL. We have shown that the spectral index obtained in Ref. 8 is

associated with a fit to an intermediate region with several competing

effects and is not associated with the asymptotic spectral index that

arises in nonlinear turbulent or wave steepening dynamical processes.
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* Fig. 2 - Two projections of a realistic two-finger cloud showing the effects of

tangency points (and A1) where K =0
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Smoothed radiance conlou showing

areas where profiles were extracted.

(a) Smoothed radiance contours and three rectangular regions
in which scans are made

~5.5.
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- 3.0
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,1.0
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(b) Fitted radiance profiles with upper and lower standard deviation corre-
sponding to the lowest scanning rectangle. Small scale oscillations in arrowed
circle indicate striations. (These are resolved with about 10 points per period.)
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(c) PSD of information in (b) above after using a Kaiser-Bessel window

Fig. 4 - Event IRIS. PSD contains 100 modes. (Reference 7, Figures 65 and 66)
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(b) Fitted radiance profiles with upper and lower standard deviation conre-
* sponding to the lowest scanning rectangle. Small scale oscillations in snrowed

* . circle indicate striations. (These are resolved with about 10 points per period.)
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(c) PSD of information in (b) above after using a Kaiser-Bessel window
Fig. 5 - EVENT GAIL. PSD contains 200 modes. (Reference 7, Figures 50 and 51)
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TECHNOLOGY INTERNATIONAL CORP

75 WIGGINS AVENUE

BEDFORD, MA 01730
01CY ATTN W.P. BOQUIST

TOYON RESEARCH CO.
P.O. Box 6890
SANTA BARBARA, CA 93111

01CY ATTN JOHN ISE, JR.
OlCY ATTN JOEL GARBARINO

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278

O1CY ATTN R. K. PLEBUCH
01CY ATTN S. ALTSCHULER

01CY ATTN D. DEE
01CY ATTN D/ STOCKWELL

SNTF/1575
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FILMED

*6--85

* DTIC


